Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 886: 147718, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37595851

RESUMO

The plant pathogen Magnaporthe oryzae poses a significant threat to global food security, and its management through the cultivation of resistant varieties and crop husbandry practices, including fungicidal sprays, has proven to be inadequate. To address this issue, we conducted small-RNA sequencing to identify the roles of miRNAs and their target genes in both resistant (PB1637) and susceptible (PB1) rice genotypes. We confirmed the expression of differentially expressed miRNAs using stem-loop qRT-PCR analysis and correlated them with rice patho-phenotypic and physio-biochemical responses. Our findings revealed several noteworthy differences between the resistant and susceptible genotypes. The resistant genotype exhibited reduced levels of total chlorophyll and carotenoids compared to the susceptible genotype. However, it showed increased levels of total protein, callose, H2O2, antioxidants, flavonoids, and total polyphenols. Additionally, among the defense-associated enzymes, guaiacol peroxidase and polyphenol oxidase responses were higher in the susceptible genotypes. In our comparative analysis, we identified 27 up-regulated and 43 down-regulated miRNAs in the resistant genotype, while the susceptible genotype exhibited 44 up-regulated and 62 down-regulated miRNAs. Furthermore, we discovered eight up-regulated and five down-regulated miRNAs shared between the resistant and susceptible genotypes. Notably, we also identified six novel miRNAs in the resistant genotype and eight novel miRNAs in the susceptible genotype. These novel miRNAs, namely Chr8_26996, Chr12_40110, and Chr12_41899, were found to negatively correlate with the expression of predicted target genes, including Cyt-P450 monooxygenase, serine carboxypeptidase, and zinc finger A20 domain-containing stress-associated protein, respectively. The results of our study on miRNA and transcriptional responses provide valuable insights for the development of future rice lines that are resistant to blast disease. By understanding the roles of specific miRNAs and their target genes in conferring resistance, we can enhance breeding strategies and improve crop management practices to ensure global food security.


Assuntos
Oryza , Oryza/genética , Redes Reguladoras de Genes , Peróxido de Hidrogênio/farmacologia , Melhoramento Vegetal , Antioxidantes
2.
Folia Microbiol (Praha) ; 68(6): 889-910, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37165300

RESUMO

Adaxial, abaxial phylloplane (leaf), and spermoplane (seed) are proximal yet contrasting habitats for a microbiota that needs to be adequately explored. Here, we proposed novel methods to decipher the adaxial/abaxial-phylloplane and spermoplane-microbiomes. Comparison of 22 meta barcoded-NGS datasets (size of total data set-1980.48 Mb) enabled us to fine-map the microbiome of the rice foliar niche, which encompasses the lower, middle, top leaf as well panicle. Here, the total- and the cultivable-microbiome profiling revealed 157 genera representing ten phyla and 87 genera from 4 bacterial phyla, respectively, with a predominance of Proteobacteria and Actinobacteria. Interestingly, more bacterial communities (124-genera) preferred the abaxial than the adaxial phylloplane (104-genera) and spermoplane (67-genera) for colonization. The microbiome profiles were nearly identical on the aromatic (125-genera) and non-aromatic rice (116-genera) with high representation of Pantoea, Methylobacterium, Curtobacterium, Sphingopyxis, and Microbacterium. The culturomics investigation confirmed the abundance of Pantoea, Chryseobacterium, Pseudomonas, Acinetobacter, Sphingobacterium, and Exiguobacterium. One hundred bacterial isolates characterized and identified by polyphasic-taxonomic tools revealed the dominance of Acinetobacter, Chryseobacterium, Enterobacter, Massilia, Pantoea, Pseudomonas, and Stenotrophomonas on adaxial/abaxial-phylloplane and spermoplane. The study culminated in identifying hitherto unexplored bacterial communities on the adaxial/abaxial phylloplane and spermoplane of rice that can be harnessed for microbiome-assisted rice cultivation in the future.


Assuntos
Microbiota , Oryza , Sphingomonadaceae , Genótipo , Folhas de Planta/microbiologia
3.
Microorganisms ; 11(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36838327

RESUMO

Plant growth-promoting endophytic microbes have drawn the attention of researchers owing to their ability to confer fitness benefits in many plant species. Here, we report agriculturally beneficial traits of rice-leaf-adapted endophytic Microbacterium testaceum. Our polyphasic taxonomic investigations revealed its identity as M. testaceum. The bacterium displayed typical endophytism in rice leaves, indicated by the green fluorescence of GFP-tagged M. testaceum in confocal laser scanning microscopy. Furthermore, the bacterium showed mineral solubilization and production of IAA, ammonia, and hydrolytic enzymes. Tobacco leaf infiltration assay confirmed its non-pathogenic nature on plants. The bacterium showed antifungal activity on Magnaporthe oryzae, as exemplified by secreted and volatile organic metabolome-mediated mycelial growth inhibition. GC-MS analysis of the volatilome of M. testaceum indicated the abundance of antimicrobial compounds. Bacterization of rice seedlings showed phenotypic traits of MAMP-triggered immunity (MTI), over-expression of OsNPR1 and OsCERK, and the consequent blast suppressive activity. Strikingly, M. testaceum induced the transcriptional tradeoff between physiological growth and host defense pathways as indicated by up- and downregulated DEGs. Coupled with its plant probiotic features and the defense elicitation activity, the present study paves the way for developing Microbacterium testaceum-mediated bioformulation for sustainably managing rice blast disease.

4.
J Fungi (Basel) ; 8(6)2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35736098

RESUMO

Magnaporthe grisea (T.T. Herbert) M.E. Barr is a major fungal phytopathogen that causes blast disease in cereals, resulting in economic losses worldwide. An in-depth understanding of the basis of virulence and ecological adaptation of M. grisea is vital for devising effective disease management strategies. Here, we aimed to determine the genomic basis of the pathogenicity and underlying biochemical pathways in Magnaporthe using the genome sequence of a pearl millet-infecting M. grisea PMg_Dl generated by dual NGS techniques, Illumina NextSeq 500 and PacBio RS II. The short and long nucleotide reads could be draft assembled in 341 contigs and showed a genome size of 47.89 Mb with the N50 value of 765.4 Kb. Magnaporthe grisea PMg_Dl showed an average nucleotide identity (ANI) of 86% and 98% with M. oryzae and Pyricularia pennisetigena, respectively. The gene-calling method revealed a total of 10,218 genes and 10,184 protein-coding sequences in the genome of PMg_Dl. InterProScan of predicted protein showed a distinct 3637 protein families and 695 superfamilies in the PMg_Dl genome. In silico virulence analysis revealed the presence of 51VFs and 539 CAZymes in the genome. The genomic regions for the biosynthesis of cellulolytic endo-glucanase and beta-glucosidase, as well as pectinolytic endo-polygalacturonase, pectin-esterase, and pectate-lyases (pectinolytic) were detected. Signaling pathways modulated by MAPK, PI3K-Akt, AMPK, and mTOR were also deciphered. Multicopy sequences suggestive of transposable elements such as Type LTR, LTR/Copia, LTR/Gypsy, DNA/TcMar-Fot1, and Type LINE were recorded. The genomic resource presented here will be of use in the development of molecular marker and diagnosis, population genetics, disease management, and molecular taxonomy, and also provide a genomic reference for ascomycetous genome investigations in the future.

5.
Environ Microbiome ; 17(1): 28, 2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35619157

RESUMO

BACKGROUND: With its adapted microbial diversity, the phyllosphere contributes microbial metagenome to the plant holobiont and modulates a host of ecological functions. Phyllosphere microbiome (hereafter termed phyllomicrobiome) structure and the consequent ecological functions are vulnerable to a host of biotic (Genotypes) and abiotic factors (Environment) which is further compounded by agronomic transactions. However, the ecological forces driving the phyllomicrobiome assemblage and functions are among the most understudied aspects of plant biology. Despite the reports on the occurrence of diverse prokaryotic phyla such as Proteobacteria, Firmicutes, Bacteroides, and Actinobacteria in phyllosphere habitat, the functional characterization leading to their utilization for agricultural sustainability is not yet explored. Currently, the metabarcoding by Next-Generation-Sequencing (mNGS) technique is a widely practised strategy for microbiome investigations. However, the validation of mNGS annotations by culturomics methods is not integrated with the microbiome exploration program. In the present study, we combined the mNGS with culturomics to decipher the core functional phyllomicrobiome of rice genotypes varying for blast disease resistance planted in two agroclimatic zones in India. There is a growing consensus among the various stakeholder of rice farming for an ecofriendly method of disease management. Here, we proposed phyllomicrobiome assisted rice blast management as a novel strategy for rice farming in the future. RESULTS: The tropical "Island Zone" displayed marginally more bacterial diversity than that of the temperate 'Mountain Zone' on the phyllosphere. Principal coordinate analysis indicated converging phyllomicrobiome profiles on rice genotypes sharing the same agroclimatic zone. Interestingly, the rice genotype grown in the contrasting zones displayed divergent phyllomicrobiomes suggestive of the role of environment on phyllomicrobiome assembly. The predominance of phyla such as Proteobacteria, Actinobacteria, and Firmicutes was observed in the phyllosphere irrespective of the genotypes and climatic zones. The core-microbiome analysis revealed an association of Acidovorax, Arthrobacter, Bacillus, Clavibacter, Clostridium, Cronobacter, Curtobacterium, Deinococcus, Erwinia, Exiguobacterium, Hymenobacter, Kineococcus, Klebsiella, Methylobacterium, Methylocella, Microbacterium, Nocardioides, Pantoea, Pedobacter, Pseudomonas, Salmonella, Serratia, Sphingomonas and Streptomyces on phyllosphere. The linear discriminant analysis (LDA) effect size (LEfSe) method revealed distinct bacterial genera in blast-resistant and susceptible genotypes, as well as mountain and island climate zones. SparCC based network analysis of phyllomicrobiome showed complex intra-microbial cooperative or competitive interactions on the rice genotypes. The culturomic validation of mNGS data confirmed the occurrence of Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas in the phyllosphere. Strikingly, the contrasting agroclimatic zones showed genetically identical bacterial isolates suggestive of vertical microbiome transmission. The core-phyllobacterial communities showed secreted and volatile compound mediated antifungal activity on M. oryzae. Upon phyllobacterization (a term coined for spraying bacterial cells on the phyllosphere), Acinetobacter, Aureimonas, Pantoea, and Pseudomonas conferred immunocompetence against blast disease. Transcriptional analysis revealed activation of defense genes such as OsPR1.1, OsNPR1, OsPDF2.2, OsFMO, OsPAD4, OsCEBiP, and OsCERK1 in phyllobacterized rice seedlings. CONCLUSIONS: PCoA indicated the key role of agro-climatic zones to drive phyllomicrobiome assembly on the rice genotypes. The mNGS and culturomic methods showed Acinetobacter, Aureimonas, Curtobacterium, Enterobacter, Exiguobacterium, Microbacterium, Pantoea, Pseudomonas, and Sphingomonas as core phyllomicrobiome of rice. Genetically identical Pantoea intercepted on the phyllosphere from the well-separated agroclimatic zones is suggestive of vertical transmission of phyllomicrobiome. The phyllobacterization showed potential for blast disease suppression by direct antibiosis and defense elicitation. Identification of functional core-bacterial communities on the phyllosphere and their co-occurrence dynamics presents an opportunity to devise novel strategies for rice blast management through phyllomicrobiome reengineering in the future.

6.
Front Microbiol ; 13: 1035602, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36619990

RESUMO

Genetic and functional characteristics of rice leaf endophytic actinobacterial member, Microbacterium are described. Morphotyping, multilocus sequence analysis and transmission electron microscopy indicated the species identity of the endophytic bacterium, OsEnb-ALM-D18, as Microbacterium testaceum. The endophytic Microbacterium showed probiotic solubilization of plant nutrients/minerals, produced hydrolytic enzyme/phytohormones, and showed endophytism in rice seedlings. Further, the endophytic colonization by M. testaceum OsEnb-ALM-D18 was confirmed using reporter gene coding for green fluorescence protein. Microbacterium OsEnb-ALM-D18 showed volatilome-mediated antibiosis (95.5% mycelial inhibition) on Magnaporthe oryzae. Chemical profiling of M. testaceum OsEnb-ALM-D18 volatilome revealed the abundance of 9-Octadecenoic acid, Hexadecanoic acid, 4-Methyl-2-pentanol, and 2,5-Dihydro-thiophene. Upon endobacterization of rice seedlings, M. testaceum altered shoot and root phenotype suggestive of activated defense. Over 80.0% blast disease severity reduction was observed on the susceptible rice cultivar Pusa Basmati-1 upon foliar spray with M. testaceum. qPCR-based gene expression analysis showed induction of OsCERK1, OsPAD4, OsNPR1.3, and OsFMO1 suggestive of endophytic immunocompetence against blast disease. Moreover, M. testaceum OsEnb-ALM-D18 conferred immunocompetence, and antifungal antibiosis can be the future integrated blast management strategy.

7.
Front Microbiol ; 12: 780458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34917058

RESUMO

Phyllosphere-the harsh foliar plant part exposed to vagaries of environmental and climatic variables is a unique habitat for microbial communities. In the present work, we profiled the phyllosphere microbiome of the rice plants using 16S rRNA gene amplicon sequencing (hereafter termed metabarcoding) and the conventional microbiological methods (culturomics) to decipher the microbiome assemblage, composition, and their functions such as antibiosis and defense induction against rice blast disease. The blast susceptible rice genotype (PRR78) harbored far more diverse bacterial species (294 species) than the resistant genotype (Pusa1602) that showed 193 species. Our metabarcoding of bacterial communities in phyllomicrobiome revealed the predominance of the phylum, Proteobacteria, and its members Pantoea, Enterobacter, Pseudomonas, and Erwinia on the phyllosphere of both rice genotypes. The microbiological culturomic validation of metabarcoding-taxonomic annotation further confirmed the prevalence of 31 bacterial isolates representing 11 genera and 16 species with the maximum abundance of Pantoea. The phyllomicrobiome-associated bacterial members displayed antifungal activity on rice blast fungus, Magnaporthe oryzae, by volatile and non-volatile metabolites. Upon phyllobacterization of rice cultivar PB1, the bacterial species such as Enterobacter sacchari, Microbacterium testaceum, Pantoea ananatis, Pantoea dispersa, Pantoea vagans, Pseudomonas oryzihabitans, Rhizobium sp., and Sphingomonas sp. elicited a defense response and contributed to the suppression of blast disease. qRT-PCR-based gene expression analysis indicated over expression of defense-associated genes such as OsCEBiP, OsCERK1, and phytohormone-associated genes such as OsPAD4, OsEDS1, OsPR1.1, OsNPR1, OsPDF2.2, and OsFMO in phyllobacterized rice seedlings. The phyllosphere bacterial species showing blast suppressive activity on rice were found non-plant pathogenic in tobacco infiltration assay. Our comparative microbiome interrogation of the rice phyllosphere culminated in the isolation and identification of agriculturally significant bacterial communities for blast disease management in rice farming through phyllomicrobiome engineering in the future.

8.
Sci Rep ; 11(1): 22922, 2021 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-34824307

RESUMO

Blast disease incited by Magnaporthe oryzae is a major threat to sustain rice production in all rice growing nations. The pathogen is widely distributed in all rice paddies and displays rapid aerial transmissions, and seed-borne latent infection. In order to understand the genetic variability, host specificity, and molecular basis of the pathogenicity-associated traits, the whole genome of rice infecting Magnaporthe oryzae (Strain RMg_Dl) was sequenced using the Illumina and PacBio (RSII compatible) platforms. The high-throughput hybrid assembly of short and long reads resulted in a total of 375 scaffolds with a genome size of 42.43 Mb. Furthermore, comparative genome analysis revealed 99% average nucleotide identity (ANI) with other oryzae genomes and 83% against M. grisea, and 73% against M. poe genomes. The gene calling identified 10,553 genes with 10,539 protein-coding sequences. Among the detected transposable elements, the LTR/Gypsy and Type LINE showed high occurrence. The InterProScan of predicted protein sequences revealed that 97% protein family (PFAM), 98% superfamily, and 95% CDD were shared among RMg_Dl and reference 70-15 genome, respectively. Additionally, 550 CAZymes with high GH family content/distribution and cell wall degrading enzymes (CWDE) such endoglucanase, beta-glucosidase, and pectate lyase were also deciphered in RMg_Dl. The prevalence of virulence factors determination revealed that 51 different VFs were found in the genome. The biochemical pathway such as starch and sucrose metabolism, mTOR signaling, cAMP signaling, MAPK signaling pathways related genes were identified in the genome. The 49,065 SNPs, 3267 insertions and 3611 deletions were detected, and majority of these varinats were located on downstream and upstream region. Taken together, the generated information will be useful to develop a specific marker for diagnosis, pathogen surveillance and tracking, molecular taxonomy, and species delineation which ultimately leads to device improved management strategies for blast disease.


Assuntos
Ascomicetos/genética , Proteínas Fúngicas/genética , Genoma Fúngico , Oryza/microbiologia , Doenças das Plantas/microbiologia , Ascomicetos/patogenicidade , Bases de Dados Genéticas , Metabolismo Energético/genética , Regulação Fúngica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno , Filogenia , Transdução de Sinais/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma
9.
Soft Matter ; 17(41): 9264-9279, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34553740

RESUMO

Polyethylene melt conductivity was increased by adding a commercial anti-static agent, which resulted in a 20× decrease in electrospun fiber diameter and formation of a significant fraction of sub-micron diameter fibers. Two polyethylene formulations and varying additive concentrations were utilized to span the parameter space of conductivity and viscosity. The key role of conductivity in determining the jet radius (which sets the upper limit on the fiber size) is discussed in the context of fluid mechanics theory and previous simulations. Parameters which affect the conversion of the liquid jet to a solid fiber and the pertinent theory are outlined. An "unconfined" experimental configuration is utilized to both avoid potential needle clogging and enable direct observation of important characteristic length scales related to the interaction of the fluid and the applied electric field. In this approach, the fluid spontaneously forms an array of cone perturbations which act as stationary "nozzles" through which the mobile fluid flows to form the jet. The experimental data and theory considerations allow for a holistic discussion of the interaction between flow rate, viscosity, conductivity, and the resultant jet and fiber size. Information about the fluid viscosity and conductivity gained by observing the electrospinning process is highlighted. Schemes for theoretically predicting the cone-jet density, cone size, and flow rate are compared to experimental results.

10.
Fungal Biol ; 125(9): 733-747, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34420700

RESUMO

Genome sequence-driven molecular typing tools have the potential to uncover the population biology and genetic diversity of rapidly evolving plant pathogens like Magnaporthe oryzae. Here, we report a new molecular typing technique -a digitally portable tool for population genetic analysis of M. oryzae to decipher the genetic diversity. Our genotyping tool exploiting allelic variations in housekeeping and virulence genes coupled with pathotyping revealed a prevalence of genetically homogenous populations within a single-field and plant niches such as leaf and panicle. The M. oryzae inciting leaf-blast and panicle-blast were confirmed to be genetically identical with no or minor nucleotide polymorphism in 17 genomic loci analyzed. Genetic loci such as Mlc1, Mpg1, Mps1, Slp1, Cal, Ef-Tu, Pfk, and Pgk were highly polymorphic as indicated by the haplotype-diversity, the number of polymorphic sites, and the number of mutations. The genetically homogenous single field population showed high virulence variability or diversity on monogenic rice differentials. The study indicated that the genetic similarity displayed by the isolates collected from a particular geographical location had no consequence on their virulence pattern on rice differentials carrying single/multiple resistance genes. The data on virulence diversity showed by the identical Sequence Types (STs) is indicative of no congruence between polymorphic virulence genes-based pathotyping and conserved housekeeping genes-based genotyping.


Assuntos
Ascomicetos , Oryza , Ascomicetos/genética , Ascomicetos/patogenicidade , Genoma Fúngico/genética , Tipagem Molecular , Oryza/microbiologia , Doenças das Plantas/microbiologia , Virulência/genética
12.
Microbiol Res ; 246: 126704, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33486428

RESUMO

We have deciphered the leaf endophytic-microbiome of aromatic (cv. Pusa Basmati-1) and non-aromatic (cv. BPT-5204) rice-genotypes grown in the mountain and plateau-zones of India by both metagenomic NGS (mNGS) and conventional microbiological methods. Microbiome analysis by sequencing V3-V4 region of ribosomal gene revealed marginally more bacterial operational taxonomic units (OTU) in the mountain zone at Palampur and Almora than plateau zone at Hazaribagh. Interestingly, the rice leaf endophytic microbiomes in mountain zone were found clustered separately from that of plateau-zone. The Bray-Curtis dissimilarity indices indicated influence of geographical location as compared to genotype per se for shaping rice endophytic microbiome composition. Bacterial phyla, Proteobacteria followed by Bacteroidetes, Firmicutes, and Actinobacteria were found abundant in all three locations. The core-microbiome analysis devulged association of Acidovorax; Acinetobacter; Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium; Aureimonas; Bradyrhizobium; Burkholderia-Caballeronia-Paraburkholderia; Enterobacter; Pantoea; Pseudomonas; Sphingomonas; and Stenotrophomonas with the leaf endosphere. The phyllosphere and spermosphere microbiota appears to have contributed to endophytic microbiota of rice leaf. SparCC network analysis of the endophytic-microbiome showed complex cooperative and competitive intra-microbial interactions among the microbial communities. Microbiological validation of mNGS data further confirmed the presence of core and transient genera such as Acidovorax, Alcaligenes, Bacillus, Chryseobacterium, Comamonas, Curtobacterium, Delftia, Microbacterium, Ochrobactrum, Pantoea, Pseudomonas, Rhizobium, Rhodococcus, Sphingobacterium, Staphylococcus, Stenotrophomonas, and Xanthomonas in the rice genotypes. We isolated, characterized and identified core-endophytic microbial communities of rice leaf for developing microbiome assisted crop management by microbiome reengineering in future.


Assuntos
Endófitos/classificação , Metagenômica , Microbiota , Oryza/microbiologia , Folhas de Planta/microbiologia , Biodiversidade , Endófitos/genética , Genoma Bacteriano , Genótipo , Geografia , Índia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Análise de Sequência de DNA
13.
Microbiol Res ; 228: 126302, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31442862

RESUMO

Endophytic bacteria isolated from cactus were characterized and assessed for their capability to induce drought tolerance and growth promotion in tomato. A total of 191-bacteria representing 13-genera and 18-species were isolated from wild cactus, Euphorbia trigonas. Bacillus (58), Lysinibacillus (36), Enterobacter (29), Stenotrophomonas (18), Lelliottia (12) and Pseudomonas (12) were the most represented genera. 16S rDNA sequence (>1400-bp) comparison placed the bacterial isolates with Bacillus xiamenensis; Bacillus megaterium; Bacillus cereus; Bacillus amyloliquefaciens; Bacillus velezensis; Brevibacillus brevis; Lysinibacillus fusiformis; Enterobacter cloacae; Lelliottia nimipressuralis; Proteus penneri; Sphingobacterium multivorum; Klebsiella pneumoniae; Pseudomonas putida; Pseudomonas aeruginosa; Stenotrophomonas maltophilia; Citrobacter freundii; Chryseobacterium indologenes and Paracoccus sp. Bacillus xiamenensis was identified for the first time as plant endophyte. Upon bacterization, the endophytes triggered germination and growth promotion in tomato as indicated by 118 % and 52 % more root-biomass under drought-free and drought-induced conditions, respectively. Bacillus amyloliquefaciens CBa_RA37 and B. megaterium RR10 displayed broad spectrum endophytism in tomato. Bacterization of tomato with cactus endophyte showed altered oxidative status, stomatal and photosystem II functioning, internal leaf temperature and relative water content suggestive of physiological de-stressing from moisture stress. Activity of oxidative stress enzymes such as guaiacol peroxidase and catalase was also indicative of endophyte assisted de-stressing of tomato. Re-irrigation on 20-days of drought infliction showed 86.9% recovery of B. amyloliquefaciens CBa_RA37 primed tomato when non-primed plantlets succumbed. The cactus endophytic bacterial strain B. amyloliquefaciens CBa_RA37 showed promise for low-cost, efficient and environmentally friendly bio-inoculant technology to mitigate drought in arid zones of Asian and African continents.


Assuntos
Cactaceae/microbiologia , Secas , Endófitos/classificação , Endófitos/isolamento & purificação , Endófitos/fisiologia , Desenvolvimento Vegetal , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/microbiologia , Aclimatação , Bacillus/classificação , Bacillus/genética , Bacillus/isolamento & purificação , Bacillus/fisiologia , Biomassa , Camarões , DNA Ribossômico/genética , Clima Desértico , Endófitos/genética , Filogenia , Folhas de Planta , Raízes de Plantas , RNA Ribossômico 16S/genética , Rifamicinas/farmacologia , Análise de Sequência , Microbiologia do Solo , Estresse Fisiológico
14.
Microbiol Resour Announc ; 8(20)2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31097510

RESUMO

The first draft genome sequence of the pearl millet blast pathogen Magnaporthe grisea PMg_Dl from India is presented. The genome information of M. grisea will be useful to understand the Magnaporthe speciation, genetic diversity, environmental adaptation, and pathogenic and host range determinants.

15.
Arch Microbiol ; 200(9): 1287-1305, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29943213

RESUMO

Severity of plant diseases is often influenced by the availability of nutrients, particularly N; however, its effect on the phyllosphere microbiome in foliar pathogen challenged plants is less investigated in rice. The tripartite interaction among the fungal pathogen (Magnaporthe oryzae), rice cultivars (basmati and non-basmati, blast resistant or susceptible) and nitrogen (N) fertilization (0, 120 and 180 N) was investigated. Plant growth, elicitation of defense responses and abundance of microbial members in the rice phyllosphere were monitored using biochemical and molecular methods. In general, photosynthetic pigments were distinct for each cultivar, and optimal N doses led to higher values. The susceptible var. CO-39 and resistant CO-39I exhibited higher contents of photosynthetic pigments and micronutrients such as zinc in leaves in response to N doses. Elicitation of defense and hydrolytic enzymes was significantly influenced by pathogen inoculation and modulated by N doses, but varietal effects were distinct. Scoring indices emphasized the pathogen susceptibility of var. CO-39 and PB-1, which showed almost 40-60% higher values than the resistant cultivars; the interactions of cultivars and N doses was also significant. Characteristic changes were recorded in the abundances of the gene copies, particularly, with an overall increase in the number of cyanobacterial 16S rRNA, and bacterial amoA in pathogen-challenged treatments, while nifH gene copies exhibited a reducing trend with increasing N doses, in the presence or absence of pathogen. The varietal differences in the cause and effect relationships can be valuable in crop protection for more effective foliar application of pesticides or biocontrol agents.


Assuntos
Agentes de Controle Biológico/metabolismo , Fertilizantes/análise , Magnaporthe/metabolismo , Nitrogênio/análise , Oryza/microbiologia , Folhas de Planta/microbiologia , Carotenoides/análise , Clorofila/análise , Clorofila A/análise , Cianobactérias/genética , Microbiota , Oryza/enzimologia , Oxirredutases/genética , Doenças das Plantas/microbiologia , RNA Ribossômico 16S/genética
16.
Genome Announc ; 5(7)2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209817

RESUMO

The whole-genome assembly of a unique rice isolate from India, Magnaporthe oryzae RMg-Dl that causes blast disease in diverse cereal crops is presented. Analysis of the 34.82 Mb genome sequence will aid in better understanding the genetic determinants of host range, host jump, survival, pathogenicity, and virulence factors of M. oryzae.

17.
Genome Announc ; 5(1)2017 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-28057749

RESUMO

The genome of Ralstonia solanacearum CaRs_Mep, a race 4/biovar 3/phylotype I bacterium causing wilt in small cardamom and other Zingiberaceae plants, was sequenced. Analysis of the 5.7-Mb genome sequence will aid in better understanding of the genetic determinants of host range, host jump, survival, pathogenicity, and virulence of race 4 of R. solanacearum.

18.
Microbiol Res ; 173: 66-78, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25801973

RESUMO

Black pepper associated bacterium BP25 was isolated from root endosphere of apparently healthy cultivar Panniyur-5 that protected black pepper against Phytophthora capsici and Radopholus similis - the major production constraints. The bacterium was characterized and mechanisms of its antagonistic action against major pathogens are elucidated. The polyphasic phenotypic analysis revealed its identity as Pseudomonas putida. Multi locus sequence typing revealed that the bacterium shared gene sequences with several other isolates representing diverse habitats. Tissue localization assays exploiting green fluorescence protein expression clearly indicated that PpBP25 endophytically colonized not only its host plant - black pepper, but also other distantly related plants such as ginger and arabidopsis. PpBP25 colonies could be enumerated from internal tissues of plants four weeks post inoculation indicated its stable establishment and persistence in the plant system. The bacterium inhibited broad range of pathogens such as Phytophthora capsici, Pythium myriotylum, Giberella moniliformis, Rhizoctonia solani, Athelia rolfsii, Colletotrichum gloeosporioides and plant parasitic nematode, Radopholus similis by its volatile substances. GC/MS based chemical profiling revealed presence of Heneicosane; Tetratetracontane; Pyrrolo [1,2-a] pyrazine-1,4-dione, hexahydro-3-(2-methylpropyl); Tetracosyl heptafluorobutyrate; 1-3-Eicosene, (E)-; 1-Heneicosanol; Octadecyl trifluoroacetate and 1-Pentadecene in PpBP25 metabolite. Dynamic head space GC/MS analysis of airborne volatiles indicated the presence of aromatic compounds such as 1-Undecene;Disulfide dimethyl; Pyrazine, methyl-Pyrazine, 2,5-dimethyl-; Isoamyl alcohol; Pyrazine, methyl-; Dimethyl trisulfide, etc. The work paved way for profiling of broad spectrum antimicrobial VOCs in endophytic PpBP25 for crop protection.


Assuntos
Anti-Infecciosos/química , Endófitos/genética , Piper nigrum/microbiologia , Doenças das Plantas/microbiologia , Pseudomonas putida/genética , Compostos Orgânicos Voláteis/química , Anti-Infecciosos/metabolismo , Anti-Infecciosos/farmacologia , Endófitos/química , Endófitos/isolamento & purificação , Endófitos/metabolismo , Fungos/efeitos dos fármacos , Fungos/crescimento & desenvolvimento , Dados de Sequência Molecular , Filogenia , Phytophthora/efeitos dos fármacos , Phytophthora/crescimento & desenvolvimento , Raízes de Plantas/microbiologia , Pseudomonas putida/química , Pseudomonas putida/isolamento & purificação , Pseudomonas putida/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Compostos Orgânicos Voláteis/farmacologia
19.
Microbiol Res ; 164(3): 330-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-17517501

RESUMO

Effective control of paratuberculosis and investigations of potential link to Crohn's disease have been hampered by the lack of effective assays for easy and accurate diagnosis of Mycobacterium avium subspecies paratuberculosis (Map). Map is extremely fastidious and depends on iron chelator (Mycobactin). Map strains from humans and sheep are very difficult to isolate and may require years to emerge. Therefore, small numbers of Map isolates have been maintained in available collections. This situation has limited the study of biodiversity of Map. Though, much is known about environmental and host factors that contribute to paratuberculosis disease, but little is known about bacterial genetic mechanism of infection. Diagnostic and strain typing markers still demand improvements. Complete genome sequence of Map K10 strain is available in public domain for comparative genomics with other mycobacteria and clinical isolates of Map. It is anticipated that the genome sequence will help in carrying molecular diagnosis and strain typing with respect to Map forward at rapid pace. This paper reviews the current diagnostic and strain typing markers, which may be useful in typing of clinical isolates in near future.


Assuntos
Técnicas de Tipagem Bacteriana , Biodiversidade , Mycobacterium avium subsp. paratuberculosis/classificação , Mycobacterium avium subsp. paratuberculosis/isolamento & purificação , Paratuberculose/diagnóstico , Paratuberculose/microbiologia , Polimorfismo Genético , Animais , Genótipo , Humanos , Mycobacterium avium subsp. paratuberculosis/genética
20.
Vet Microbiol ; 134(3-4): 375-82, 2009 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-18838235

RESUMO

Mycobacterium avium subspecies paratuberculosis (MAP) causes Johne's disease (JD or paratuberculosis) in animals and has also been implicated in Crohn's disease of humans. It has been shown that MAP is endemic in animal population of India. Understanding of heterogeneity among MAP strains is important both for diagnosis and design control measures. Genotyping and epidemiological investigations revealed that MAP 'Bison type' was the predominant strain infecting domestic ruminant population in India. MAP 'Bison type' has also been reported from USA. A number of comparative genomics studies have been conducted to understand 'Cattle type' and 'Sheep type' strains. However, present study was the first attempt to characterize MAP 'Bison type' S5 using different markers including IS900, ISMAP02, IS1311, LSPs and SSRs. Study showed that MAP S5 is similar to MAP K10 in terms of number of IS900, IS1311 and ISMAP02 elements. There was high sequence similarity for IS900 and ISMAP02 between MAP K10 and MAP S5. However, this study also reported genetic differences between two strains. In some IS1311 loci, TG gap at 64th and 65th position was observed in MAP S5. Further sequencing of few more MAP isolates confirmed that this gap was specific to indigenous MAP 'Bison type' and can be further used as molecular signature. ISMAP02 locus 1 was observed at polymorphic position in MAP S5 compared to MAP K10. MAP 'Bison type' S5 also showed polymorphic profile for LSP(P)4. Polymorphism was also observed in SSRs. This pilot study may form the basis for future epidemiological investigations.


Assuntos
Genoma Bacteriano , Mycobacterium avium subsp. paratuberculosis/classificação , Mycobacterium avium subsp. paratuberculosis/genética , Sequência de Bases , DNA Intergênico/genética , Genômica , Genótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...